Please provide any 2 values below to lớn solve the Pythagorean equation: a2 + b2 = c2.
Bạn đang xem: a^2+b^2+c^2
Pythagorean Theorem
The Pythagorean Theorem, also known as Pythagoras' theorem, is a fundamental relation between the three sides of a right triangle. Given a right triangle, which is a triangle in which one of the angles is 90°, the Pythagorean theorem states that the area of the square formed by the longest side of the right triangle (the hypotenuse) is equal to lớn the sum of the area of the squares formed by the other two sides of the right triangle:
In other words, given that the longest side c = the hypotenuse, and a and b = the other sides of the triangle:
a2 + b2 = c2
This is known as the Pythagorean equation, named after the ancient Greek thinker Pythagoras. This relationship is useful because if two sides of a right triangle are known, the Pythagorean theorem can be used to lớn determine the length of the third side. Referencing the above diagram, if
a = 3 and b = 4
the length of c can be determined as:
c = √a2 + b2 = √32+42 = √25 = 5
It follows that the length of a and b can also be determined if the lengths of the other two sides are known using the following relationships:
a = √c2 - b2
b = √c2 - a2
Xem thêm: the difficulties of learning english and how to overcome them
The law of cosines is a generalization of the Pythagorean theorem that can be used to lớn determine the length of any side of a triangle if the lengths and angles of the other two sides of the triangle are known. If the angle between the other sides is a right angle, the law of cosines reduces to lớn the Pythagorean equation.
There are a multitude of proofs for the Pythagorean theorem, possibly even the greatest number of any mathematical theorem.
Algebraic proof:
In the figure above, there are two orientations of copies of right triangles used to lớn size a smaller and larger square, labeled i and ii, that depict two algebraic proofs of the Pythagorean theorem.
In the first one, i, the four copies of the same triangle are arranged around a square with sides c. This results in the formation of a larger square with sides of length b + a, and area of (b + a)2. The sum of the area of these four triangles and the smaller square must equal the area of the larger square such that:
(b + a)2 = c2 + 4 | = c2 + 2ab |
which yields:
c2 = | (b + a)2 - 2ab |
= | b2 + 2ab + a2 - 2ab |
= | a2 + b2 |
which is the Pythagorean equation.
In the second orientation shown in the figure, ii, the four copies of the same triangle are arranged such that they size an enclosed square with sides of length b - a, and area (b - a)2. The four triangles with area
also size a larger square with sides of length c. The area of the larger square must then equal the sum of the areas of the four triangles and the smaller square such that:
(b - a)2 + 2ab | |
= | b2 - 2ab + a2 + 2ab |
= | a2 + b2 |
Since the larger square has sides c and area c2, the above can be rewritten as:
Xem thêm: toán lớp 4 thương có chữ số 0 trang 85
c2 = a2 + b2
which is again, the Pythagorean equation.
There are numerous other proofs ranging from algebraic and geometric proofs to lớn proofs using differentials, but the above are two of the simplest versions.
Bình luận