(x+y+z)^3 x^3 y^3 z^3

loader

Solve

Bạn đang xem: (x+y+z)^3 x^3 y^3 z^3

Guides

Standard VIII

Mathematics

Factorisation by Grouping Terms

Question

Open in App

Solution

Verified by Toppr

We know the identity: (a+b+c)3a3b3c3=3(a+b)(b+c)(c+a)

Using the above identity taking a=xb=y and c=z, the equation (xyz)3x3+y3+z3 can be factorised as follows:

(xyz)3x3+y3+z3=3(xy)(yz)(z+x)=3(xy)(y+z)(z+x)=3(xy)(y+z)(zx)

Hence, (xyz)3x3+y3+z3=3(xy)(y+z)(zx)

Was this answer helpful?

Similar Questions

Q

1

Factorise (xy)3 + (yz)3 + (zx)3

View Solution

 Prove that.
(x+y)³+(y+z)³+(z+x)³ —3(x+y)(y+z)(z+x)=2(x³+y³+z³—3xyz)

View Solution

Q

3

Simplify :

(x-y)  + (y-z) 3 + (z-x) 3

View Solution

Q

4

If x+y+z=0, what can be said about x3+y3+z3?

View Solution

Q

5

Factorise 

(xy)3+(yz)3+(zx)3   [3 MARKS]

Xem thêm: đề thi thử thpt quốc gia môn tiếng anh 2018


View Solution

Solve

Guides